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Abstract
In three-mode Fock space we construct a new tripartite entangled state |α, γ 〉θλ

which makes up a new quantum mechanical representation. The state |α, γ 〉θλ

can be generated by using the set-up composed of an asymmetric beam splitter
and a parametric down-conversion amplifier. We then show how to use |α, γ 〉θλ

to find new squeezing operator and new squeezed state.

PACS numbers: 03.67.−a, 03.65.Bz, 42.50.Dv

1. Introduction

The concept of quantum entanglement is increasingly of interest in studies of quantum
information and quantum communication. It was originated by Einstein, Podolsky and Rosen
(EPR) in a paper arguing the incompleteness of quantum mechanics [1] and has played a
key role in understanding some fundamental problems in quantum mechanics and quantum
optics [2–7]. A beam splitter is perhaps the simplest tool to produce quantum entanglement.
It is known that even one single-mode squeezed state incident on a beam splitter yields a
bipartite entangled state [8]. In [9], Braunstein and Loock pointed out that continuous-
variable quantum teleportation of arbitrary coherent states has been realized experimentally
with bipartite entanglement built from two single-mode squeezed vacuum states combined at a
beam splitter whose role is expressed by the operator B [6]. They also asserted that a sequence
of beam splitter operations,

BN−1,N (π/4)BN−2,N−1(cos−1 1/
√

3) × · · · × B1,2(cos−1 1/
√

N), (1)

applied to one momentum squeezed vacuum mode 1 and N − 1 position squeezed vacuum
modes 2 through N, yields an N-mode state with N-party entanglement between all modes.
They obtained the entangled N-mode state

∫
dx|x, x, . . . , x〉. This state is an eigenstate with

total momentum zero and all relative positions Xi − Xj = 0 (i, j = 1, 2, . . . , N) [10].
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All these references exhibit the role of the beam splitter in generating entanglement and
entangled states. Meanwhile we know that a two-mode squeezed state (made of idler light and
signal light) generated by parametric down-conversion process simultaneously is a two-mode
entangled state in the frequency domain. It is natural to think if we combine the mechanism of
both beam splitter (especially an asymmetric beam splitter) and parametric down conversion,
then what kind of entangled states can be generated? We are motivated to construct an
entangled state generated by an asymmetric beam splitter and a parametric down-conversion
amplifier. On the other hand, we hope the newly explored entangled states could be qualified
to make up a new quantum mechanical representation, so we need the explicit form of this
kind of entangled states in Fock space. As Dirac pointed out in [11]: ‘When one has a
particular problem to work out in quantum mechanics, one can minimize the labor by using a
representation in which the representatives of the more important abstract quantities occurring
in that problem are as simple as possible’, we believe that entangled state representations
will be useful not only in treating many problems in quantum optics, but also can open up
(explore) new research topics. In EPR’s pioneer argument, the entanglement was due to the
fact that two particles’ relative positions X1 − X2 and their total momentum P1 + P2 can be
simultaneously measured. Enlightened by EPR, in [12] the simultaneous eigenstate |η〉 of
commutative operators (X1 − X2, P1 + P2) in two-mode Fock space is found:

|η〉 = exp
[− 1

2 |η|2 + ηa
†
1 − η∗a†

2 + a
†
1a

†
2

]|00〉12, (2)

where η = (η1 + iη2)/
√

2, |00〉12 is the vacuum state,
(
ai, a

†
i

)
, i = 1, 2, are the

Bose annihilation and creation operators, related to Xi and Pi by Xi = 1√
2

(
ai + a

†
i

)
,

Pi = 1√
2i

(
ai − a

†
i

)
. Experimentally, the |η〉 state can be generated as follows

[13–16]: when a pair of incoming modes—one is the zero-momentum eigenstate |p = 0〉1 ∼
exp

(
1
2a

†2
1

)|0〉1 (maximum squeezing in the p-direction) and the other is the zero-position

eigenstate |x = 0〉2 ∼ exp
(− 1

2a
†2
2

)|0〉2 (maximum squeezing in the x-direction)—impinge on
a symmetric 50:50 beam splitter (without loss and phase shift), the outgoing state is a bipartite
entangled state, i.e.,

exp
[
−π

4

(
a
†
1a2 − a

†
2a1

)] |p = 0〉1 ⊗ |x = 0〉2 = exp
[
a
†
1a

†
2

]|00〉. (3)

Then making a local oscillator displacement D(η) = exp
[
ηa

†
1 − η∗a1

]
for exp

[
a
†
1a

†
2

]|00〉, the
state |η〉 is obtained. However, when the beam splitter is not a 50:50 one, but an asymmetric
one, then what is the output state when two light fields maximally squeezed in Xi and Pi ,
respectively, entering its two input ports and get superimposed? According to [17], the output
state emerging from asymmetric beam splitter is defined by

|η〉θ = exp
[− 1

2 |η|2 + ηa
†
1 − η∗(a†

2 sin 2θ + a
†
1 cos 2θ

)
+ 1

2η∗2 cos 2θ

+ 1
2

(
a
†2
1 − a

†2
2

)
cos 2θ + a

†
2a

†
1 sin 2θ

]|00〉, (4)

where θ is related to the amplitude reflectivity and transmissivity of the asymmetric beam
splitter, and a local oscillator displacement is also made. Clearly, when θ = π/4, |η〉θ reduces
to |η〉. It is remarkable that |η〉θ makes up a new complete set and is of importance from the
quantum mechanics representation theory.

A question thus naturally arises: can we extend |η〉θ state to the tripartite case in a direct
way so that a new kind of tripartite entangled states of continuum variables can be constructed?
The answer is affirmative. Our work is arranged as follows. In section 2, we briefly review the
main properties of |η〉θ . In section 3, we introduce the new tripartite entangled state |α, γ 〉θλ

which is the common eigenvector of three commutable operators, with λ being a squeezing
parameter. In section 4, we discuss how to generate |α, γ 〉θλ by an asymmetric beam splitter and
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parametric down-conversion amplifier. In section 5, we investigate its properties, especially
its completeness, partly non-orthogonal property and its Schmidt decomposition. In section 6,
we show how to apply |α, γ 〉θλ to deriving new squeezing operator and generalized squeezed
state.

2. The bipartite entangled state |η〉θ

We begin with briefly reviewing the properties of two-mode entangled state |η〉θ . |η〉θ is the
common eigenvector of commutative operators: (X2 − X1 tan θ) and (P1 + P2 tan θ), i.e.,

(X2 − X1 tan θ)|η〉θ = −η1 tan θ |η〉θ , (5)

(P1 + P2 tan θ)|η〉θ = η2 tan θ |η〉θ . (6)

This simultaneous measurement of (X2 − X1 tan θ) and (P1 + P2 tan θ) with accuracy is
allowed by quantum mechanics and can be visualized in a generalized eight-port interferometer
measurement [18].

Using the normal ordering form of |00〉〈00| =: exp
{−a

†
1a1 − a

†
2a2

}
: and the technique

of integration within an ordered product (IWOP) of operators [19, 20] we can smoothly prove
the completeness relation

sin 2θ

∫
d2η

π
|η〉θθ 〈η| = 1, (7)

so |η〉θ make up a complete set. The overlap of |η〉θ is

θ 〈η′|η〉θ = 2πδ(η1 − η′
1)δ(η2 − η′

2)/sin 2θ, η = (η1 + iη2)/
√

2. (8)

According to Dirac’s representation theory in quantum mechanics, the set of |η〉θ makes up a
new orthogonal and complete representation in the two-mode Fock space. The state |η〉θ can
be generated by an asymmetric beam splitter: operating the asymmetric beam splitter operator

S2 = exp
[−θ

(
a
†
1a2 − a

†
2a1

)]
(9)

on a pair of incoming modes |p = 0〉1 ⊗ |x = 0〉2, we have

S2|p = 0〉1 ⊗ |x = 0〉2 ∼ exp
[

1
2

(
a
†
1 cos θ + a

†
2 sin θ

)2 − 1
2

(
a
†
2 cos θ − a

†
1 sin θ

)2
]

× exp
[
2θ

(
a
†
2a1 − a

†
1a2

)]|00〉
= exp

[
a
†
1a

†
2 sin 2θ + 1

2

(
a
†2
1 − a

†2
2

)
cos 2θ

]|00〉 = |η = 0〉θ . (10)

Then operating the displacement operator D1(η) ≡ exp
[
ηa

†
1 − η∗a1

]
on equation (10) leads

to equation (4), i.e.,

D1(η) exp
[
a
†
1a

†
2 sin 2θ + 1

2

(
a
†2
1 − a

†2
2

)
cos 2θ

]|00〉 = |η〉θ . (11)

Experimentally, this displacement can be implemented by reflecting the light field of |η = 0〉θ
from a partially reflecting mirror (say 99% reflection and 1% transmission) and adding
through the mirror a field that has been phase and amplitude modulated according to the
value η ≡ |η| eiϕ .
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3. The new tripartite entangled state

We now introduce a new kind of three-mode entangled state in Fock space

|α, γ 〉θ,λ = sec hλ exp
{− 1

2 |α|2 − 1
2 |γ |2 + 1

2α∗2 cos 2θ + a
†
1(α − α∗ cos 2θ)

− a
†
2(α

∗ sec hλ sin 2θ + γ ∗ tanh λ) + γ a
†
3 + a

†
1a

†
2 sec hλ sin 2θ

+ a
†
2a

†
3 tanh λ + 1

2

(
a
†2
1 − a

†2
2 sec h2λ

)
cos 2θ

}|000〉, (12)

where α = α1 +iα2, γ = γ1 +iγ2 are the two complex numbers, λ is a real number (later, one
can see that it is a squeezing parameter characterizing a parametric down-conversion amplifier
[21]). In particular, when λ = 0, sec hλ = 1 and tanh λ = 0, then equation (12) reduces to

|α, γ 〉θ,0 = exp
{− 1

2 |α|2 + αa
†
1 − α∗(a†

1 cos 2θ + a
†
2 sin 2θ

)
+ 1

2α∗2 cos 2θ

+ a
†
1a

†
2 sin 2θ + 1

2

(
a
†2
1 − a

†2
2

)
cos 2θ

}
exp

[− 1
2 |γ |2 + γ a

†
3

]|000〉
≡ |α〉θ ⊗ |γ 〉3, (13)

where |α〉θ is the bipartite entangled state in a1–a2-mode (10) generated by an asymmetric
beam splitter, while |γ 〉3 is the coherent state in a3-mode. On the other hand, when θ = π/4,

equation (12) becomes

|α, γ 〉 π
4 ,λ = sec hλ exp

{− 1
2 (|α|2 + |γ |2) + a

†
1α + γ a

†
3

+ a
†
2

(
a
†
1 − α∗) sec hλ + a

†
2

(
a
†
3 − γ ∗) tanh λ

}|000〉, (14)

this is a tripartite entangled state which can be generated by a symmetric beam splitter
and parametric down-conversion amplifier. For a review of various applications of the
entangled state representation of continuum variables we refer to [22]. Operating ai on
|α, γ 〉θ,λ respectively yields

(
a3 − a

†
2 tanh λ

)|α, γ 〉θλ = γ |α, γ 〉θλ, (15)
(
a1 − a

†
1 cos 2θ − a

†
2 sec hλ sin 2θ

)|α, γ 〉θλ = (α − α∗ cos 2θ)|α, γ 〉θλ, (16)(
a2 − a

†
1 sec hλ sin 2θ + a

†
2 sec h2λ cos 2θ − a

†
3 tanh λ

)|α, γ 〉θλ

= −(α∗ sec hλ sin 2θ + γ ∗ tanh λ)|α, γ 〉θλ. (17)

By combining equations (16) and (17) we see

(X1 tan θ sec hλ − X2 + X3 tanh λ)|α, γ 〉θλ =
√

2 tanh λ(α1 tan θ csc hλ + γ1)|α, γ 〉θλ, (18)

(P1 cot θ sec hλ + P2 + P3 tanh λ)|α, γ 〉θλ =
√

2 tanh λ(α2 cot θ csc hλ + γ2)|α, γ 〉θλ. (19)

Note that the three operators (X1 tan θ sec hλ − X2 + X3 tanh λ), (P1 cot θ sec hλ + P2 +
P3 tanh λ) and a3 − a

†
2 tanh λ) make up a complete commutable operator set.

4. Implementation of |α, γ〉θλ

Supposing we have the two-mode asymmetric entangled state as in equation (10) and an extra
vacuum state |0〉3,

|α = 0〉θ ≡ exp
[
a
†
1a

†
2 sin 2θ + 1

2

(
a
†2
1 − a

†2
2

)
cos 2θ

]|00〉12 ⊗ |0〉3. (20)

On the basis of this state, we make the squeezing transformation [9]

S23a
†
2S

−1
23 = a

†
2 cosh λ − a3 sinh λ, (21)



New tripartite entangled state 14137

by the two-mode squeezing operator S23 = exp
[
λ
(
a
†
2a

†
3−a2a3

)]
, which means we let a†

2-mode

and a
†
3-mode interact in a parametric down-conversion amplifier via a nonlinear process, then

we obtain

S23 exp
[
a
†
1a

†
2 sin 2θ + 1

2

(
a
†2
1 − a

†2
2

)
cos 2θ ]|000〉

= sec hλ exp
[
a2

3A + a3B + C
]

exp
[
a
†
2a

†
3 tanh λ

]|000〉, (22)

where

A ≡ − 1
2 sinh2 λ cos 2θ, (23)

B ≡ (
a
†
2 cosh λ cos 2θ − a

†
1 sin 2θ

)
sinh λ, (24)

C ≡ a
†
1a

†
2 cosh λ sin 2θ + 1

2

(
a
†2
1 − a

†2
2 cosh2 λ

)
cos 2θ. (25)

Using the completeness relation of coherent state
∫

d2z
π

|z〉33〈z| = 1 and the following formula

∫
d2z

π
exp[ζ |z|2 + ξz + ηz∗ + f z2 + gz∗2] = 1√

ζ 2 − 4fg
exp

[−ζ ξη + ξ 2g + η2f

ζ 2 − 4fg

]
, (26)

whose convergent condition is either

Re(ζ + f + g) < 0, Re

(
ζ 2 − 4fg

ζ + f + g

)
< 0, (27)

or

Re(ζ − f − g) < 0, Re

(
ζ 2 − 4fg

ζ − f − g

)
< 0, (28)

we have

exp
[
a2

3A + a3B
]

exp
[
a
†
3a

†
2 tanh λ

] =
∫

d2z

π
exp

[
a2

3A + a3B
]|z〉33〈z| exp

[
a
†
3a

†
2 tanh λ

]

=
∫

d2z

π
: exp

[−|z|2 + z
(
B + a

†
3

)
+ z∗(a†

2 tanh λ + a3
)

+ z2A − a
†
3a3

]
:

= : exp
[(

B + a
†
3

)(
a
†
2 tanh λ + a3

)
+

(
a
†
2 tanh λ + a3

)2
A − a

†
3a3

]
: , (29)

and then substituting equation (29) into equation (22) we can rewrite equation (22) as

(22) ≡ sec hλ exp
[(

B + a
†
3

)
a
†
2 tanh λ + a

†2
2 A tanh2 λ + C

]|000〉
= sec hλ exp

[
a
†
1a

†
2 sec hλ sin 2θ + a

†
2a

†
3 tanh λ + 1

2

(
a
†2
1 − a

†2
2 sec h2λ

)
cos 2θ

]|000〉
= |α = 0, γ = 0〉θλ. (30)

Then making a two-mode displacement D1(α)D3(γ ) for |α = 0, γ = 0〉θλ by two local
oscillators, we make up the state |α, γ 〉θλ,

D1(α)D3(γ )|α = 0, γ = 0〉θλ = |α, γ 〉θλ, (31)

where Di(α) = exp
[
αa

†
i − α∗ai

]
and the relation Di(α)a†D−1

i (α) = a
†
i − α∗ is used.

Thus, |α, γ 〉θλ can be generated by asymmetric beam splitter and parametric down-conversion
amplifier.
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5. Properties of |α, γ〉θλ

We now investigate the major properties of |α, γ 〉θλ. We need to know what is the integration
measure with which |α, γ 〉θλ can make up a complete set. Using the normally ordered form
of the vacuum projection operator

|000〉〈000| =: exp
[−a

†
1a1 − a

†
2a2 − a

†
3a3

]
: , (32)

where the symbol : : denotes normal ordering, we can employ the IWOP technique and
equation (26) to prove the completeness relation of |α, γ 〉θλ,

sin 2θ

sec h2λ

∫
d2α d2γ

π2
|α, γ 〉θλ,θλ〈α, γ | = sin 2θ

∫
d2α d2γ

π2
: exp[−|γ |2 + γ ζ + γ ∗ζ †]

× exp

[
−|α|2 + αξ + α∗ξ † +

1

2
(α∗2 + α2) cos 2θ + κ

]
:

= : exp

[
ζ ζ † +

1

sin2 2θ

(
ξξ † +

cos 2θ

2
(ξ 2 + ξ †2)

)
+ κ

]
: =: exp[0]: = 1 (33)

where

ζ ≡ a
†
3 − a2 tanh λ, (34)

ξ ≡ a
†
1 − a1 cos 2θ − a2 sec hλ sin 2θ, (35)

κ ≡ (
a
†
1a

†
2 + a1a2

)
sec hλ sin 2θ +

(
a
†
2a

†
3 + a2a3

)
tanh λ

+
1

2

[
a
†2
1 + a2

1 − (
a
†2
2 + a2

2

)
sec h2λ

]
cos 2θ −

3∑
i=1

a
†
i ai . (36)

Here, the factor sin 2θ/sec h2λ is integration measures needed for the completeness relation.
It must be pointed out that the integration d2α d2γ is two fold in complex variables, not three
fold, this is because the state |α, γ 〉θλ is entangled among three modes, which reduces the
folds of integration. Thus, we note that although |α, γ 〉θλ is defined in three-mode Fock space,
because its three modes are mutually entangled, it spans a completeness relation with two-fold
complex integration measure. Furthermore, in order to examine if |α, γ 〉θλ constitutes an
orthogonal set or not, using equations (18) and (19) we evaluate the following matrix elements
in the |α, γ 〉θλ state:

θλ〈α′, γ ′|(X1 tan θ sec hλ − X2 + X3 tanh λ)|α, γ 〉θλ

=
√

2 tanh λ(α1 tan θ csc hλ + γ1)θλ〈α′, γ ′.|α, γ 〉θλ

=
√

2 tanh λ(α′
1 tan θ csc hλ + γ ′

1)θλ〈α′, γ ′.|α, γ 〉θλ, (37)

θλ〈α′, γ ′|(P1 cot θ sec hλ + P2 + P3 tanh λ)|α, γ 〉θλ

=
√

2 tanh λ(α2 cot θ csc hλ + γ2)θλ〈α′, γ ′.|α, γ 〉θλ

=
√

2 tanh λ(α′
2 cot θ csc hλ + γ ′

2)θλ〈α′, γ ′.|α, γ 〉θλ, (38)

which lead to
√

2 tanh λ[(α1 − α′
1) tan θ csc hλ + (γ1 − γ ′

1)]θλ〈α′, γ ′.|α, γ 〉θλ = 0, (39)
√

2 tanh λ[(α2 − α′
2) cot θ csc hλ + (γ2 − γ ′

2)]θλ〈α′, γ ′.|α, γ 〉θλ = 0, (40)
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thus we can see

θλ〈α′, γ ′|α, γ 〉θλ ∝ coth2 λ

2
δ[(α1 − α′

1) tan θ csc hλ + γ1 − γ ′
1]

× δ[(α2 − α′
2) cot θ csc hλ + γ2 − γ ′

2]. (41)

Equation (41) shows that the inner product of |α, γ 〉θλ involves two δ functions.
To explain in more detail why |α, γ 〉θλ is an entangled state, we make the following

two-fold Fourier transformation:∫ ∞

−∞
dα2 dγ2|α, γ 〉θλ ei(uα2+νγ2) = W(u, v, α1, γ1)

∣∣∣∣ 1√
2
(α1 − u)

〉
1

⊗
∣∣∣∣ 1√

2
(−v + γ1)

〉
3

⊗
∣∣∣∣− 1√

2
[(u + α1) sec hλ tan θ + (v + γ1) tanh λ]

〉
2

, (42)

where the three single-mode states all belong to the set of coordinate eigenvectors

|q〉i = π−1/4 exp
[− 1

2q2 +
√

2qa
†
i − 1

2a
†2
i

]|0〉i , (43)

and W(u, v, α1, γ1) is a normalization factor

W =
√

2 sec hλ

π−7/4 cos θ
exp

[− 1
4 [(v + γ1) sec hλ − (u + α1) tan θ tanh λ]2

]
. (44)

Thus, the inverse transformation of equation (42) is

|α, γ 〉θλ = 1

4π2

∫ ∞

−∞
du dvW e−i(uα2+νγ2)

∣∣∣∣ 1√
2
(α1 − u)

〉
1

⊗
∣∣∣∣ 1√

2
(γ1 − v)

〉
3

⊗
∣∣∣∣− 1√

2
[(u + α1) sec hλ tan θ + (v + γ1) tanh λ]

〉
2

. (45)

This is just the Schmidt decomposition of |α, γ 〉θλ , so |α, γ 〉θλ is an entangled state [23]. In
momentum representation, the Schmidt decomposition of |α, γ 〉θλ can be expressed as

|α, γ 〉θλ = 1

4π2

∫ ∞

−∞
du dvW ′ e−i(uα1+νγ1)

∣∣∣∣ 1√
2
(u + α2)

〉
1

⊗
∣∣∣∣ 1√

2
(v + γ2)

〉
3

⊗
∣∣∣∣− 1√

2
[(u − α2) sec hλ cot θ + (v − γ2) tanh λ]

〉
2

, (46)

where the three single-mode states all belong to the set of momentum eigenvectors:

|p〉i = π−1/4 exp
[− 1

2p2 +
√

2ipa
†
i + 1

2a
†2
i

]|0〉i , (47)

and W ′(u, v, α2, γ2) is a normalization factor:

W ′ =
√

2 sec hλ

π−7/4 sin θ
exp

[− 1
4 [(v − γ2) sec hλ − (u − α2) cot θ tanh λ]2]. (48)

The quantification of multipartite entanglement, even for pure states, is still the subject of
current research [10]. In general, multipartite inseparability criteria cannot be formulated in
such a compact form as those for bipartite. In order to verify genuine N-party entanglement,
one has to rule out any possible partially separable forms. In principle, this can be done
by considering all possible bipartite splittings or groupings and, for instance, applying the
negative partial transpose criterion [24]. In order to see the entanglement involved in |α, γ 〉θλ
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more clearly, by tracing out one party, the remaining two-party state is

Tr1|α, γ 〉θλθλ〈α, γ | =
∫

d2z

π 1
〈z|α, γ 〉θλθλ〈α, γ |z〉1

= sec h2λ

sin 2θ
: exp

[−|γ |2 +
(
a
†
2a

†
3 + a2a3 − γ ∗a†

2 − γ a2
)

tanh λ
]

× exp
[
γ a

†
3 + γ ∗a3 − a

†
2a2 tanh2 λ − a

†
3a3

]
: (49)

where we have inserted the completeness of coherent state
∫

d2z
π

|z〉11〈z| and used

equation (26). Observing equations (49) one can see that, after tracing out one party, a
†
2-

mode is coupled with a
†
3-mode. In other words, the remaining two-mode fields are still in the

bipartite entangled state. Tracing out another mode will yield a similar result.

6. Application of the |α, γ〉θλ representation

As an application of the |α, γ 〉θλ representation, we build the following ket–bra operator in an
integration form:

Uθ(σ, λ) ≡ sin 2θ

sec h2λ

∫
d2α d2γ

(πµ)2
|α/µ, γ /µ〉θλ,θλ〈α, γ |, (50)

where (α, γ ) → (α/µ, γ /µ) is a c-number dilation transformation. The meaning of
discussing (50) lies in generating new squeezed state by an asymmetric beam splitter and
parametric down-conversion amplifier. It should be pointed out that Uθ(σ, λ) is a new
three-mode squeezing operator (for a review of squeezed states we refer to [25]). Using
equation (12) and the IWOP technique we can directly perform the integral in equation (50):

Uθ(σ, λ) = 2µ√
K

sin 2θ sec hσ exp

[(
1

2
− 2

K
(µ2 + 1 − α∗2 − µ2α2 cos2 2θ)

)
a
†2
1 cos 2θ

]

× exp

[(
1 +

2

K
(2µ2α2 cos2 2θ − µ2 − 1)

)
a
†
1a

†
2 sec hλ sin 2θ + a

†
2a

†
3 tanh σ tanh λ

]

× exp

[
a
†2
2

(
2µ2α2

K
sin2 2θ − 1

2

)
sec h2λ cos 2θ

]
: exp

[−(
a
†
1a1 + a

†
2a2 + a

†
3a3

)]

× exp

[
2µ

K

[
(1 + µ2)(1 + cos2 2θ) − 2 cos2 2θ

(
α∗2 + µ2α2)]a†

1a1

]

× exp
[ µ

K

[
(1 + µ2 − 2α∗2)a

†
1a2 + (1 + µ2 − 2µ2α2)a

†
2a1

]
sec hλ sin 4θ

]

× exp

[
2µ(1 + µ2)

K
a
†
2a2 sec h2λ sin2 2θ +

(
a
†
3a3 + a

†
2a2 tanh2 λ

)
sec hσ

]
:

× exp

[(
1

2
− 2µ2

K
(1 + µ2 − µ2α2 − α∗2 cos2 2θ)

)
a2

1 cos 2θ

]

× exp

[(
2µ2α∗2

K
sin2 2θ − 1

2

)
a2

2 sec h2λ cos 2θ − a2a3 tanh σ tanh λ

]

× exp

[
a1a2

(
1 − 2µ2

K
(1 + µ2 − 2α∗2 cos2 2θ)

)
sec hλ sin 2θ

]
, (51)
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where we have set µ = eσ and K = 1 + µ4 − 2µ2 cos 4θ. Especially, when θ = π/4,
equation (51) reduces to

Uθ= π
4

= sec h2σ exp
[(

a
†
1a

†
2 sec hλ + a

†
2a

†
3 tanh λ

)
tanh σ

]
exp

[(
a
†
1a1 + a

†
2a2 + a

†
3a3

)
ln sec hσ

]
× exp[−(a1a2 sec hλ + a2a3 tanh λ) tanh σ ], (52)

which is just a new three-mode squeezing operator. Using equation (52), we see

Uθ= π
4
a1U

−1
θ= π

4
= a1 cosh σ − a

†
2 sec hλ sinh σ,

Uθ= π
4
a2U

−1
θ= π

4
= a2 cosh σ − (

a
†
1 sec hλ + a

†
3 tanh λ

)
sinh σ,

Uθ= π
4
a3U

−1
θ= π

4
= a3 cosh σ − a

†
2 tanh λ sinh σ.

(53)

By introducing the two quadratures

X = 1√
2
(X1 sec hλ − X2 + X3 tanh λ), (54)

P = 1√
2
(P1 sec hλ − P2 + P3 tanh λ), [X,P ] = i, (55)

we derive

Uθ= π
4
XU−1

θ= π
4

= eσ X, Uθ= π
4
PU−1

θ= π
4

= e−σ P, (56)

which shows the standard squeezing for two mutually conjugate operators in an opposite way.
Operating Uθ= π

4
on the three-mode vacuum state |000〉, we have

Uθ= π
4
|000〉 = sec h2σ exp

[(
a
†
1a

†
2 sec hλ + a

†
2a

†
3 tanh λ

)
tanh σ

]|000〉, (57)

which is a new three-mode squeezed vacuum state. The quantum fluctuation of the operator
quadratures in the state Uθ= π

4
|000〉 is

〈(�X)2〉 = 1
2 e−2σ , 〈(�P )2〉 = 1

2 e2σ (58)

thus the minimum uncertainty relation still remains

�X�P ≡
√

〈(�X)2〉〈(�P )2〉 = 1
2 . (59)

In summary, we have introduced a new tripartite entangled state |α, γ 〉θλ in three-mode
Fock space. Such states are potentially useful, because they not only make up a complete
representation [11], but also can be generated by an asymmetric beam splitter and parametric
down-conversion amplifier. Using |α, γ 〉θλ we have derived new squeezing operator and
squeezed state. Thus, we see again the intrinsic relation between entanglement and squeezed
state.
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